

# IoT、ビッグデータ、AIは農業をどう変えるか

2017年8月29日

株式会社日本総合研究所 創発戦略センター 井熊 均



# 0-1. 創発戦略センターの紹介

創発戦略センターは、「Think」(思考)だけでなく、「Do」(実行)を行うプロフェッショナルを標榜し活動しています。 社会的課題の解決を目的とし、新たな社会システムの構築や先端事業の実現に取り組んでいます。 最近では、アジアを中心として積極的に海外へ展開しています。



#### 新たな社会システム

- ✓ 社会が抱える課題を把握し、新たな 社会システムの構築に向けた支援 を行っています。
- ✓ 国・自治体への政策立案、モデル 事業運営、企業へのアドバイザリー 業務等を通じ、PFI、CSR、インパクト ビジネスなどの分野で多くの成果を 挙げてきました。



#### 先端事業

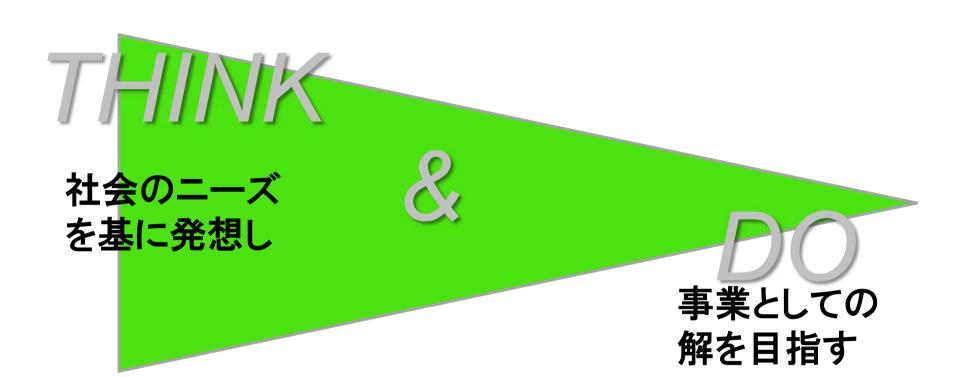
- ✓ 新しい価値を見出し、ビジネス実 現の支援を行っています。
- ✓ 異業種企業や異なる技術の連携によるバリューアップを図り、コンソーシアムや事業会社の設立など数多くの実績を有しています。



#### 海外展開

- ✓ 日本国内での経験を元に、新興 国・途上国といった新たな領域で、 社会的課題の解決に資する先端事 業、社会システムの実行支援を 行っています。
- ✓ 現地企業や政府と協力し、様々な 事業を実施しています。




井熊 均(いくま ひとし)専務執行役員 創発戦略センター所長早稲田大学大学院理工学研究科修了。三菱重工業を経て、日本総研。専門は、事業計画、事業運営、産業政策、環境/エネルギー、ベンチャービジネス論、地域経営。内閣府・経済産業省・総務省の委員、早稲田大学非常勤講師等を務める。



足達 英一郎 (あだち えいいちろう) 理事 一橋大学経済学部卒業後、民間研究機関を経て日本総研。専門は、 企業の社会的責任の観点からの産業調査、企業評価。経済同友会 社会的責任経営委員会WGメンバー、ISO26000作業部会日本エク スパート、三菱商事環境・CSRアドバイザリーコミッティー委員、等を 務める。



# 0-2. 創発戦略センターの紹介



「本当の価値と経済的な価値に橋を架けたい。」



#### 0-3. 創発戦略センターの紹介

#### 【インキュベーション注力期】

1990年代中盤~2000年代前半

インキュベーション戦略の下、コンソーシアム活動を通じてベンチャー企業や新たなビジネスの立ち上げ等に注力。

◇ISVジャパン(土壌汚染処理) ◇ファーストエスコ(省エネサービス)◇イーキュービック(省エネモニタリングサービス)

#### 【構造改革注力期】

1990年代後半~現在

構造改革の流れに沿って、公的事業の改革、電力自由化、環境と金融等に関わる事業の立ち上げ等に注力。

◇PFI市場の立ち上げ ◇公共団体向けアドバイザリー業務の実施 ◇環境と金融に関するサービスの立ち上げ

#### 【グローバル活動注力期】

2000年代中盤~現在

新興国市場の重要性向上に鑑み、ローカル・インテリジェンスの獲得を旨として中国、東南アジアの活動を開。

◇天津エコシティ、タイ・アマタ工業団地等スマートシティプロジェクト推進 ◇日本初の中国SRIファンドの立ち上げ

#### 【現 状】

2010年代前半~現在

地域コミュニティを舞台とする事業へのニーズが拡大

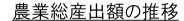
◇地域エネルギー事業 ◇次世代地域交通サービス(COSMOS)コンソーシアム ◇ギャップシニアコンソーシアム

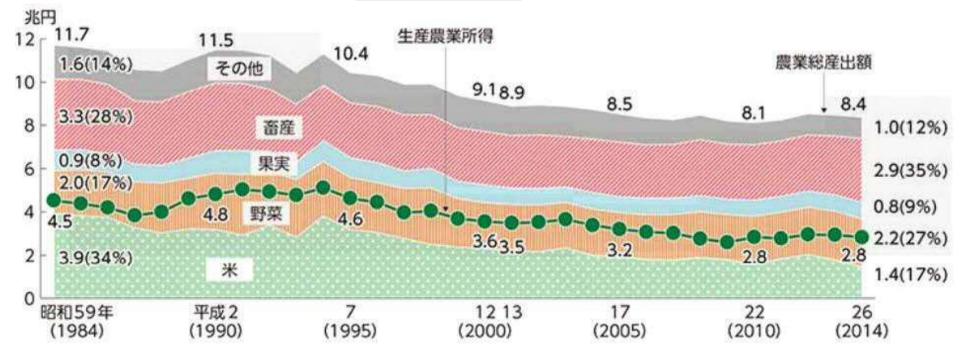


#### 0-4. 創発戦略センターの紹介

#### ■ 近年、IoT関連の活動が拡大

- ▶ 中国電力会社との協働による次世代省エネシステム 中国二大電力会社の一社と、省エネと生産効率を同時に改善する次世代型のシステムを 開発中。
- ▶ コミュニティ向け次世代交通システム 自動運転技術を使いニュータウン等を対象にした交通サービスの地域関連システムを開発 中。
- ▶ シニア向けサービス関連システム 自治体と共同で民間主導のシニア向けサービス拠点を作り、シニアとのコミュニケーションを サポートするシステムを開発中。
- ▶ 農業データPF 国が進める農業関連データのプラットフォーム構築事業の立ち上げに参画。
- ▶ 次世代農業ロボット 日本総研独自の多機能型ロボットを開発中。





# Ⅰ 日本の農業の現状



# 1-1. 農業生と就業人口の推移

- 日本農業は長期にわたり衰退傾向が続き、農業産出額、農業従事者数ともに大きく低下。
  - ✓農業産出額は10兆円を大きく割り込み、8兆円台にまで減少。
  - ✓耕作放棄地面積(主観ベース)は42.3万haまで増加。(2015年)





出所:農林水産省「平成27年度 食料・農業・農村白書」



# 1-2. 農業生と就業人口の推移

- 離農者の増加により、販売農家数は1990年の半数程度にまで減少
  - ✓農業就業人口は200万人を切る。
  - ✓平均年齢は約66歳。
  - ✓女性と高齢者が支える。


|         | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016 (概数値) |
|---------|-------|-------|-------|-------|-------|-------|------------|
| 農業就業人口  | 260.6 | 260.1 | 251.4 | 239.0 | 226.6 | 209.7 | 192.2      |
| うち女性    | 130.0 | 134.5 | 128.4 | 121.1 | 114.1 | 100.9 | 90.0       |
| うち65歳以上 | 160.5 | 157.7 | 151.6 | 147.8 | 144.3 | 133.1 | 125.4      |
| 平均年齢    | 65.8  | 65.9  | 65.8  | 66.2  | 66.7  | 66.4  |            |

出所:農林水産省「農林業センサス」、「農業構造動態調査」



# 2-1. 企業参入と農業生産者の所得

- 農業改革により法人の参入が急増。
  - ✓わずか5年で10倍に急増。
  - ✓株式会社による参入が過半を占める。
  - ✓株式会社参入により資金調達と投資行動に変化。



出所:農林水産省「一般企業の農業への参入状況」



# 2-2. 企業参入と農業生産者の所得

■ 企業参入は進むが、農業生産者一人一人の所得は伸び悩み。

#### 露地栽培野菜の所得水準

|                  |        | 農業所得   | 収益性    |                                |                               |
|------------------|--------|--------|--------|--------------------------------|-------------------------------|
| 区分               | 粗収益    | 経営費    | 所 得    | 農業経営<br>関 与 者<br>一人当たり<br>農業所得 | 自営農業<br>労働1時間<br>当たり<br>付加価値額 |
|                  | 千円     | 千円     | 千円     | 千円                             | 円                             |
| 全国平均<br>【0.98ha】 | 5,195  | 3,336  | 1,859  | 834                            | 671                           |
| 0.5 ha 未満        | 2,137  | 1,519  | 618    | 303                            | 320                           |
| 0.5~1.0          | 4,239  | 2,707  | 1,532  | 684                            | 510                           |
| 1.0~2.0          | 7,869  | 4,769  | 3,100  | 1,303                          | 802                           |
| 2.0~3.0          | 11,859 | 6,819  | 5,040  | 1,813                          | 1,066                         |
| 3.0~5.0          | 17,768 | 11,222 | 6,546  | 2,265                          | 1,240                         |
| 5.0~7.0          | 26,390 | 18,227 | 8,163  | 3,046                          | 1,302                         |
| 7.0ha以上          | 40,929 | 26,134 | 14,795 | 4,851                          | 2,234                         |

出所:農林水産省「営農類型別経営統計(個別経営)」より作成



# 2-3. 企業参入と農業生産者の所得

# 施設栽培野菜の所得水準

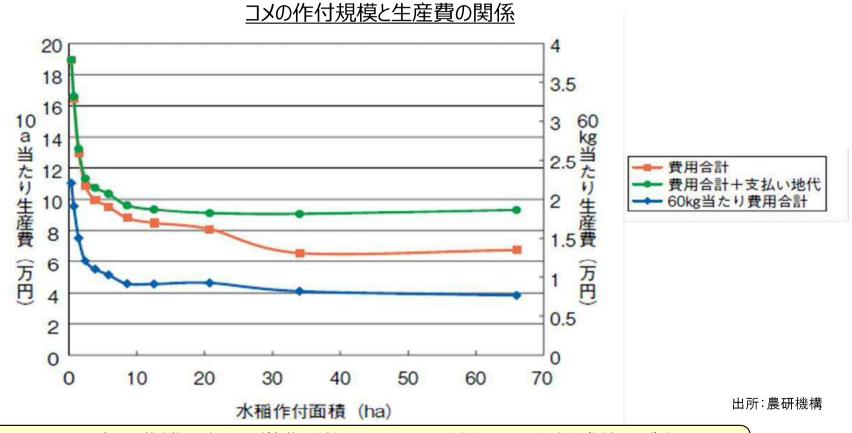
|                  |                   |        | 農業所得   |        |                          | 収益性                       |  |
|------------------|-------------------|--------|--------|--------|--------------------------|---------------------------|--|
| 区                | 分                 | 粗収益    | 経営費    | 所 得    | 農業経営関与<br>者一人当たり<br>農業所得 | 自営農業労働<br>1時間当たり<br>付加価値額 |  |
|                  |                   | 千円     | 千円     | 千円     | 千円                       | 円                         |  |
| 全国平均<br>【4,260㎡】 |                   | 11,284 | 7,046  | 4,238  | 1,675                    | 938                       |  |
| 2,000 m          | 未満 湯              | 5,196  | 3,139  | 2,057  | 939                      | 692                       |  |
| 2,000 ~          | 3,000             | 9,666  | 6,289  | 3,377  | 1,431                    | 789                       |  |
| 3,000 ~          | 5,000             | 14,413 | 8,653  | 5,760  | 2,050                    | 1,067                     |  |
| 5,000 ~          | 10,000            | 16,595 | 10,418 | 6,177  | 1,967                    | 925                       |  |
| 10,000 ~         | <sup>20,000</sup> | 26,668 | 17,114 | 9,554  | 3,317                    | 1,387                     |  |
| 20,000 m²        | 以上                | 33,161 | 20,234 | 12,927 | 3,513                    | 1,461                     |  |

出所:農林水産省「営農類型別経営統計(個別経営)」より作成



# 2-4. 企業参入と農業生産者の所得

# 畑作の所得水準【豆・イモ・茶・サトウキビ等、北海道のみ】


|                  |             |        | 農業所得   | 収益性    |                          |                           |
|------------------|-------------|--------|--------|--------|--------------------------|---------------------------|
| X                | 分           | 粗収益    | 経営費    | 所 得    | 農業経営関与<br>者一人当たり<br>農業所得 | 自営農業労働<br>1時間当たり<br>付加価値額 |
|                  |             | 千円     | 千円     | 千円     | 千円                       | 円                         |
| 全国平均<br>【25.2ha】 |             | 31,687 | 21,571 | 10,116 | 3,861                    | 3,048                     |
| 5.0              | ha 未満       | 2,620  | 2,162  | 458    | 229                      | 429                       |
| 5.0              | $\sim$ 10.0 | 15,152 | 10,845 | 4,307  | 1,873                    | 1,715                     |
| 10.0             | $\sim$ 20.0 | 20,893 | 14,378 | 6,515  | 2,726                    | 2,272                     |
| 20.0             | $\sim$ 30.0 | 30,842 | 21,147 | 9,695  | 3,525                    | 2,691                     |
| 30.0             | $\sim$ 40.0 | 42,388 | 28,740 | 13,648 | 4,690                    | 3,638                     |
| 40.0             | ha 以上       | 64,617 | 43,092 | 21,525 | 7,104                    | 4,267                     |

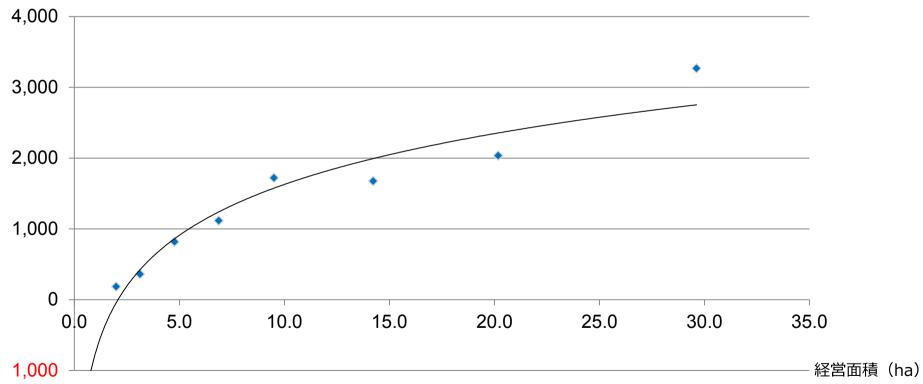
出所:農林水産省「営農類型別経営統計(個別経営)」より作成



# 3-1. 日本農業の特性

北海道等を除くと、離れた圃場(農地)をかき集めて規模拡大することが多い。⇒分散圃場で移動時間、コストが増大。農機の稼働率も低下。




オペレーター1名 + 農機 1 台での営農形態では、10ha以上はコスト低減効果が少ない。 (農地が n 倍になると、ヒト + 農機も n 倍になってしまう)

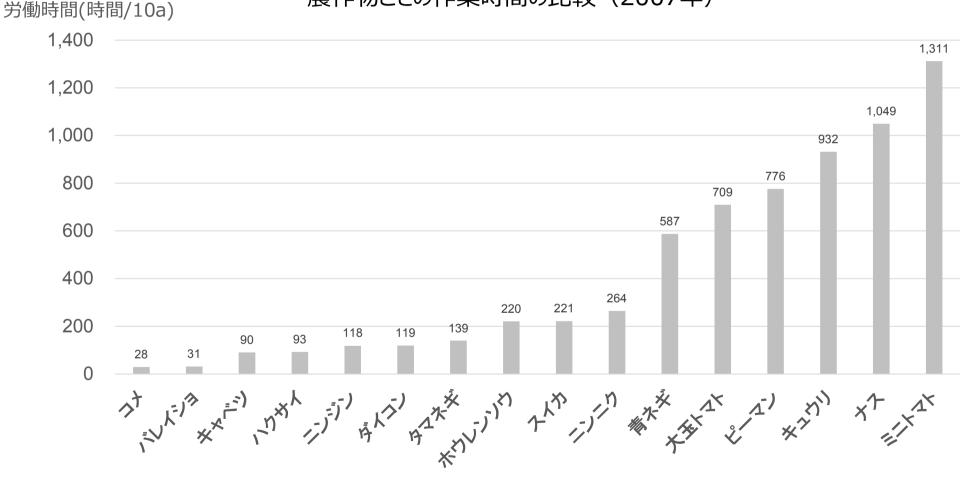


# 3-2. 日本農業の特性

- 露地での野菜栽培では、規模拡大しても農業粗収益は比例して増加せず。
  - ✓ 農地が広くなると、高単価だが手間のかかる農産物が作れず。作りやすい低単価な品目に。
  - ✓ 同一品目でも、見回り頻度や手入れの水準の低下により、品質が低下し単価下落。

自営農業労働1時間当たり付加価値額(円)



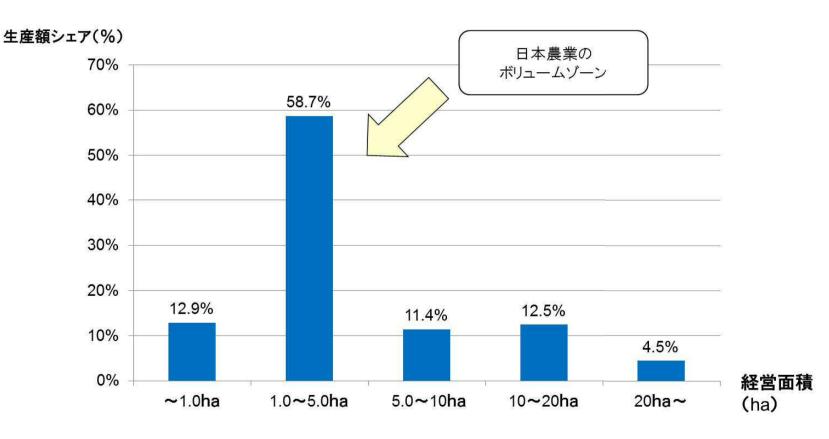

次世代の国づくり

出所:「IoTが拓く次世代農業 アグリカルチャー4.0の時代」



# 3-3. 日本農業の特性

# 農作物ごとの作業時間の比較(2007年)




出所:農林水産省「農業経営統計調査」、「品目別経営統計」を基に講演者作成



# 3-4. 日本農業の特性

- 日本農業のボリュームゾーンは数ha規模。今度の農地拡大を踏まえても、分散した10ha程度の農地が典型例。
- スマート農業は分散型の中規模圃場もターゲットに。



出所:農林水産省統計より講演者作成



# Ⅱ.期待高まるスマート農業



# 1-1. スマート農業が注目される背景

#### ■ 一般的な背景

光接続や無線LANなど高速情報通信網の普及

スマートフォン、タブレットなどの携帯端末の普及

スーパーコンピュータから携帯端末まで分析機能の飛躍的進歩

センサー類の革新的な進歩

センサリング、データ通信、分析の大幅なコストダウン

国内外の多様なプレーヤー、サービスの登場

#### ■ 農業特有の背景

就業人口の減少

作業環境改善、経営改善への要請

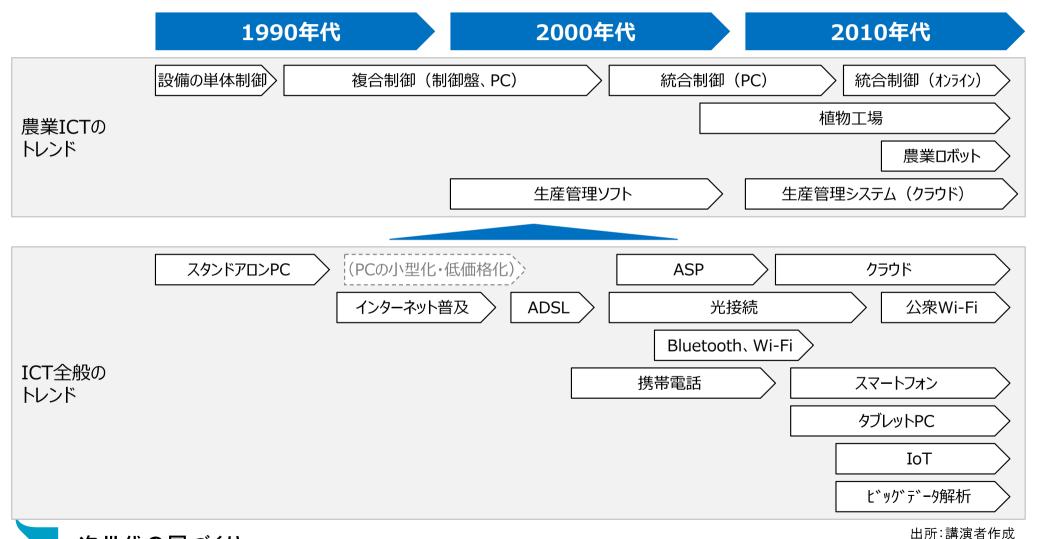
技術、ノウハウの継承



# 1-2. スマート農業が注目される背景

■ 他分野との比較:農業分野の高い自由度

#### 自動運転の技術レベル


| 自動運転レベル |              | 自動化の内容                                                                                                    | 開発技術                                                                                         |
|---------|--------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| レベル1    | SAE※<br>レベル1 | <ul><li>車両の自動化システムが、人間の運転者をときどき支援し、<br/>いくつかの運転タスクを実施することができる。</li></ul>                                  | • 自動ブレーキ(アイサイト<br>等)                                                                         |
| レベル2    | SAE<br>レベル2  | ・車両の自動化システムが、いくつかの運転タスクを事実上<br>実施することができる一方、人間の運転者は、運転環境を<br>監視し、また、残りの部分の運転タスクを実施し続けること<br>になる。          | <ul><li>アクティブクルーズ<br/>(MobilEye EQ等)</li><li>オートパイロット(TESLA)</li><li>プロパイロット(日産)、等</li></ul> |
| レベル3    | SAE<br>レベル3  | ・自動化システムは、いくつかの運転タスクを事実上実施するとともに、運転環境をある場合に監視する一方、人間の<br>運転者は、自動化システムが要請した場合に、制御を取り<br>戻す準備をしておかなければならない。 | ・エンハンスト・オートパイ<br>ロット(TESLA)等                                                                 |
| レベル4    | SAE<br>レベル4  | ・自動化システムは、運転タスクを実施し、運転環境を監視することができる。人間は、制御を取り戻す必要はないが、<br>自動化システムは、ある環境・条件下のみで運航することができる。                 | • (開発段階 : Google Car)                                                                        |
| 2 7,54  | SAE<br>レベル5  | <ul><li>・自動化システムは、人間の運転者が運転できる全ての条件下において、全ての運転タスクを実施することができる。</li></ul>                                   | <del></del>                                                                                  |

出所: http://www.kantei.go.jp/jp/singi/it2/senmon bunka/detakatsuyokiban/dorokotsu dai1/siryou3.pdfをもとに日本総研作成



#### 1-3. スマート農業が注目される背景

■ 情報通信技術の革新、農業関連システムの開発の進展を受け、2010年頃より農業ICTの普及が促進。





#### 1-4. スマート農業が注目される背景

■ スマート農業の普及で、農業従事者みなが儲かる「アグリカルチャー4.0」の時代へ。

アグリカルチャー1.0

紀元前~

天水農業から灌漑農業へ。B技術と農業土木。四大文明の基盤。

アグリカルチャー1.5

18世紀~

ヨーロッパの「農業革命」。三圃式農業から輪栽式農業へ。産業革命を下支え。

アグリカルチャー2.0

1940年代~

化学肥料の実用化。高収量品種による「緑の革命」。

アグリカルチャー3.0

1960年代~

農業機械の普及。農業大国における大規模農業の台頭。

アグリカルチャー3.5

2000年頃~

部分的なICTの活用。植物工場や生産管理システム。

アグリカルチャー4.0

2010年代後半~

IoTを活用した「農業従事者みなが儲かる農業モデル」の実現。

次世代の国づくり

出所:講演者作成



# 書籍紹介:IoTが拓く次世代農業 アグリカルチャー4.0の時代



第1章 ビジネス化が進む農業

第2章 IoT化する農業

第3章 アグリカルチャー4.0の時代

第4章 アグリカルチャー4.0を牽引するIoT

第5章 アグリカルチャー4.0の推進策

著者:三輪泰史•井熊均•木通秀樹

出版社:日刊工業新聞社 出版日:2016年10月27日



# Ⅲ.スマート農業の現状



# 1-1.スマート農業の基本コンセプト 一「匠の技」のシステム化一

■ 技術革新が目覚ましいスマート農業技術は、匠の農家の「眼」、「頭脳」、「手」を代替・支援することが可能。効率化と付加価値向上を両立させることで、農業の競争力は大きく向上。

#### 「匠の眼」

農業用ドローン

衛星リモートセンシング

フィールドサーバ

農機搭載センサー (収量コンバイン)

ロボット搭載センサー (収穫ロボット)

人間が見えないモノも見える (高所からの視点、赤外領域、 農産物や土壌の内部)

#### 「匠の頭脳」

自動制御

ΑI

ビッグデータ解析



経営者、熟練者の 判断

「匠の技」をシステムに移植することで、非熟練者でも高度な判断が可能に

#### 「匠の手」

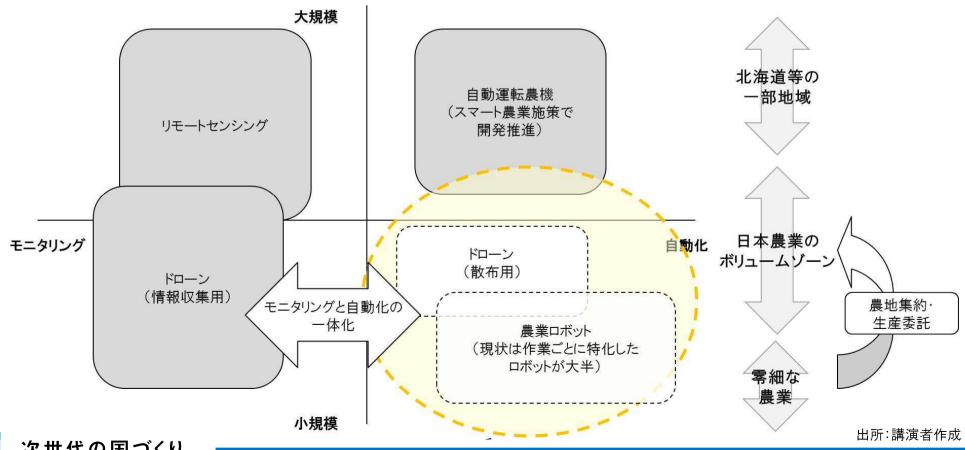
自動運転農機

農業ロボット

環境制御システム (植物工場)

農業用ドローン

自動給水


効率化に加え、人間では困難な 精密作業も可能に

出所:講演者作成



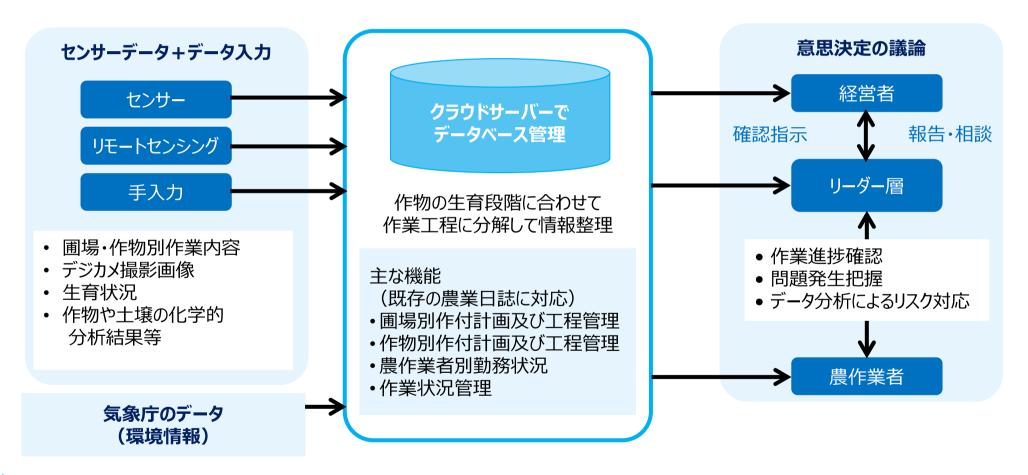
# 1-2. スマート農業の適用範囲の広さ

- スマート農業は、集約的な大規模農業だけでなく、分散圃場を中心とした中小規模農業にも 効果を発揮。
- 今後は、自動運転農機を活用した栽培受託や、ドローン等を活用したモニタリングを担うアウ トソーシング事業者が台頭すると想定。





# 2-1. 「匠の頭脳」: 農業ICTの俯瞰図

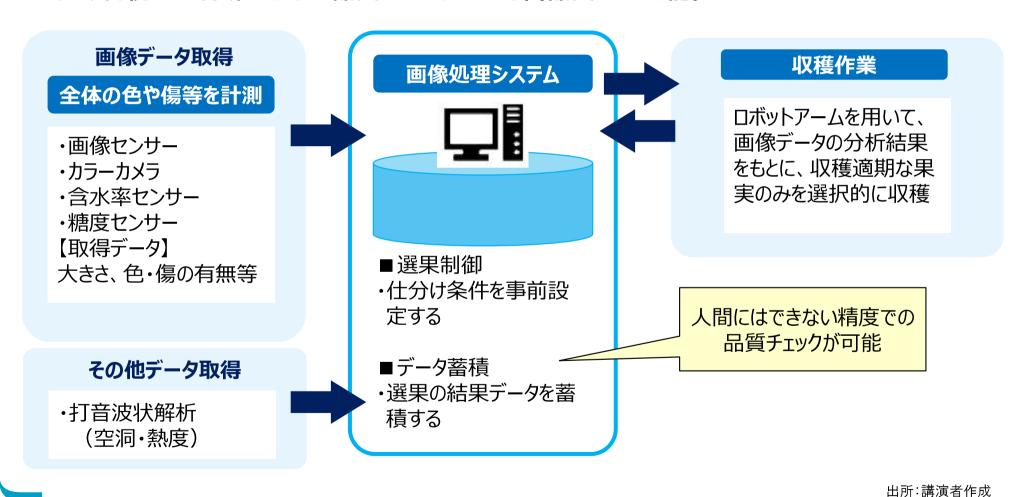

■ 農業生産、資材管理、流通管理等を目的とした農業ICTが次々と上市され、普及。大手SIerからベンチャー企業まで、多くの企業が多種多様なシステムを提供。

| 農地·設備·調達           | 生産                      | 流通           | 需要<br>(小売・外食・加工) |
|--------------------|-------------------------|--------------|------------------|
| 土壌情報システム           | 生産管理システム                | 受発注システム      | (生産連動型)          |
| 圃場管理システム           | GAP連動システム               | 代金決裁システム     | 受発注システム          |
| 資材調達システム           | 温室・植物工場制御システム(環境制御システム) | 配送システム       | 売り場管理システム        |
| 資材管理システム<br>(特に農薬) | 作業自動化システム 収穫予測システム      | トレーサビリティシステム | 店舗管理システム         |
|                    | 圃場リモートセンシングシステム(露地栽培)   |              | 工場管理システム         |
|                    | フィールドサーバシステム (露地栽培)     |              |                  |
|                    | 経営管理・経理システム             |              | 出所:講演者作成         |



# 2-2.「匠の頭脳」:生産管理システム(例)

■ 農業生産プロセスの見える化、記録、計画策定等を行うシステム。他の農業ICTシステムの基盤となる中核的なプラットフォーム。




出所:講演者作成



# 3.「匠の手」:農業ロボット(例:収穫ロボット)

■ 農作物の鮮度を保ちながら、大量の収穫物を正確・迅速に選果するシステム。省力化だけでなく、目視では判断できない品質チェックによる高品質化が可能。



| 大分類     | 小分類             | 社名▪団体名               | 事例                               |
|---------|-----------------|----------------------|----------------------------------|
|         |                 | 農研機構                 | 自動直進田植機                          |
|         |                 | 農研機構                 | 自動追従トラクタ                         |
|         | 運転支援トラクター       | 農研機構、クボタ             | 自動操舵トラクタ                         |
| 自動運転    |                 | 井関農機                 | トラクタ一用走行支援システム「リードアイ」            |
| 日助建牧    |                 | クボタ                  | 自動運転トラクター                        |
|         | 自動運転トラクター       | ヤンマー                 | 自動運転トラクター「ロボトラ」                  |
|         |                 | 北海道大学                | 自動運転トラクター                        |
|         | 自動運転農機(コンバイン等)  | ヤンマー                 | インテリジェントコンバイン(脱穀・選別状況、流量等を瞬時に把握) |
|         | 15.72 1.4 1.0 I | 農研機構                 | 全自動田植えロボット(GPS+姿勢センサー)           |
|         | 播種・定植ロボット       | パナソニック               | 植物工場での自動定植ロボット                   |
|         |                 | スプレッド                | 植物工場での自動定植ロボット                   |
|         |                 | 富士重工                 | 草刈りロボット                          |
|         | 除草ロボット          | 農研機構                 | 畦畔除草ロボット                         |
|         |                 | 岐阜県情報技術研究所           | アイガモロボット                         |
|         | ドローン、ヘリ         | DJI                  | 農業用ドローン「Agras MG-1」              |
|         |                 | クボタ                  | 農業用無人ヘリコプター                      |
|         |                 | パナソニック               | トマト収穫ロボット                        |
| 農業ロボット  |                 | スキューズ                | トマト収穫ロボット                        |
|         |                 | 信州大学                 | ホウレンソウ収穫ロボット、キャベツ収穫ロ<br>ボット      |
|         |                 | 農研機構                 | イチゴ収穫ロボット                        |
|         | 収穫ロボット          | シブヤ精機、新農業機械実用化促進株式会社 | イチゴ収穫ロボット                        |
|         |                 | 前川製作所                | イチゴ収穫ロボット                        |
|         |                 | 大阪府立大学               | トマト収穫ロボット                        |
|         |                 | 高知工科大学               | ピーマン収穫ロボット                       |
|         |                 | 長崎大学                 | アスパラガス収穫ロボット                     |
|         | 梱包ロボット          | 農研機構                 | イチゴパック詰めロボット                     |
|         | 個 ピロハット         | ヤンマーグリーンシステム         | イチゴパック詰めロボット                     |
| アシストス一ツ |                 | クボタ                  | ラクベスト                            |
|         | 木倒状度ノンヘトへ一フ     | ニッカリ                 | 果樹用腕上げ作業補助器具                     |
|         | パワーアシストスーツ      | 東京農工大                | パワーアシストスーツ                       |
|         |                 | 和歌山大学                | パワーアシストスーツ                       |



# IV.アグリカルチャー4.0 実現のポイント



#### 1-1. スマート農業が乗り越えるべきハードル

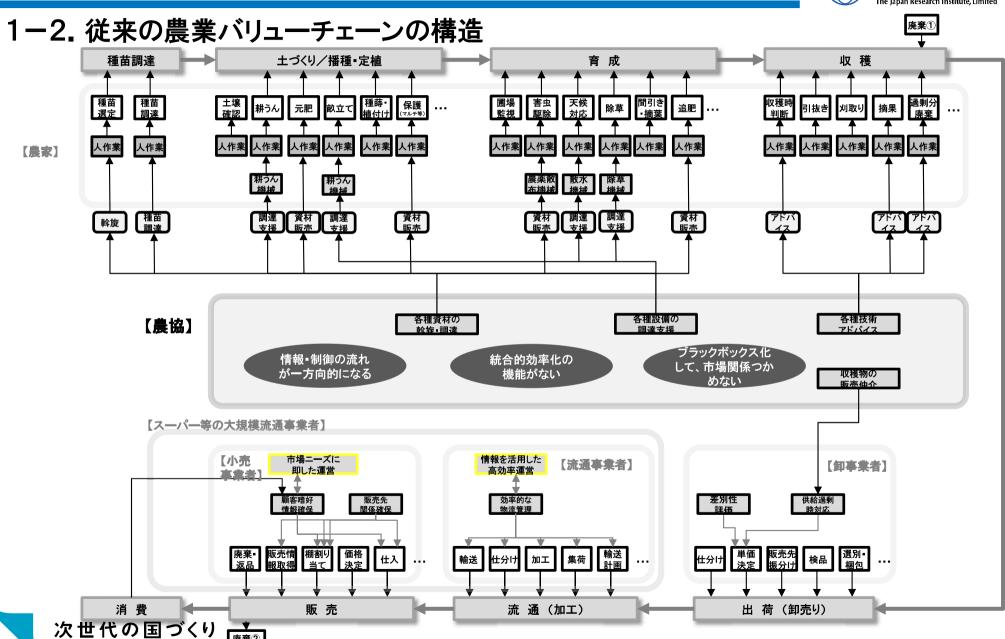
■ 期待高まるスマート農業だが、普及を阻むハードルが存在。これらの課題を乗り越えるための 方策が不可欠。

#### ①投資額の高さ

✓植物工場、自動運転農機、農業ロボット等は非常に高額。導入可能な農業者は限定的。

#### ②付加価値の低さ

✓例えば植物工場のように、効率化や省力化の観点のみで投資回収することは困難。「効率化 +α」の付加価値創出が課題。(例:機能性強化、オーダーメイド型、新品種等)


#### ③共诵化、万换性

- ✓農機メーカーごとに独自仕様となってしまうと、農業従事者の使い勝手が低下。(習熟期間がコスト要因)
- ✓農機・ロボットと生産管理システムの連携や、農機・ロボット間の連動等の互換性が欠如。

#### ④法規制

✓自動運転農機や農業用ドローンの活用には、法規制の緩和やガイドライン策定が不可欠。検討が進んでいるが、いまだ課題あり。(例:農地間の公道も自動運転できるか)







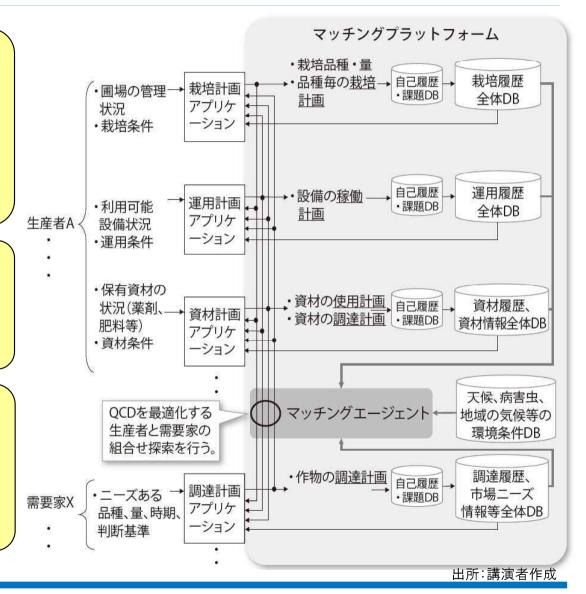
# 2. アグリカルチャー4.0の実現のための8つのポイント

- ①持続的で「儲かる農業」に的を絞った研究開発・実用化
- ②基礎研究機関を3カ所程度に集約。各地の研究機関はサテライトと位置付け
- ③匠の技と農業IoTの融合(官民共同のオープンイノベーション)
- ④オープンな農業データベースの構築
- ⑤需給マッチングプラットフォームの構築。オーダーメイド型栽培の実現
- ⑥農業IoTの機器の仕様の共通化。連動性と互換性を確保
- ⑦規制緩和と集中的な投資のための「農業IoT特区」の立ち上げ
- ⑧需要家とセットでのアジアを中心とした海外展開



#### 3-1. 需要と供給を結ぶマッチングプラットフォーム

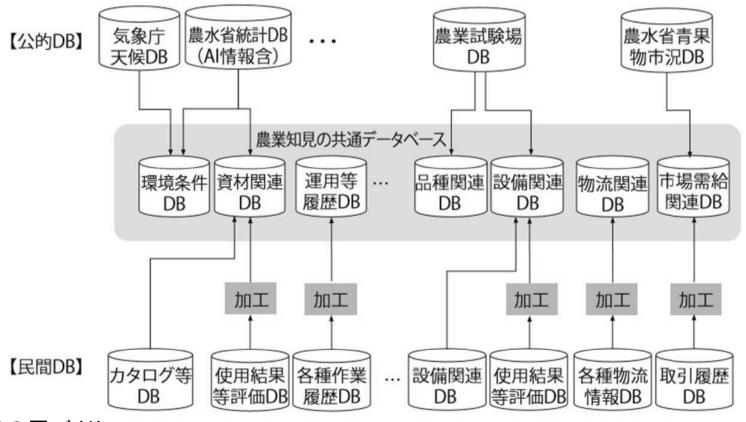
#### 効果①:ニーズ起点での需給マッチング


- 需要家から農産物のニーズを集約し、調達計画を策定。
- 調達計画を基に生産者が生産計画を策定し、 農産物を栽培。
- 量と質を考慮した需給マッチングを実現。将来は「オーダーメイド型」に。

#### 効果②:公的データ・研究成果の共有化

- 需要家ニーズに応える農産物栽培のための公的データ・研究成果を共有化。
- 生産者の技術力を底上げ。

#### 効果③:農業者の参加によるビッグデータ蓄積


- 農業者が自主的に栽培履歴データ等の一部 を匿名化して提供。
- 匠の技をデータとして集約。新たな研究開発の 促進も。





# 3-2. 農業界の「知」を集約しオランダを凌駕する研究体制に

- 日本農業の技術力の高さの要因の一つは、農業生産者の創意工夫から生まれるボトムアップ型の研究開発力。
- 公的研究機関、大学、民間企業の研究成果と、農業生産者の「匠の技」を集約することで、オランダのワーゲニンゲンURを凌駕する「バーチャル・フードバレー」を立ち上げ。



次世代の国づくり

出所:講演者作成

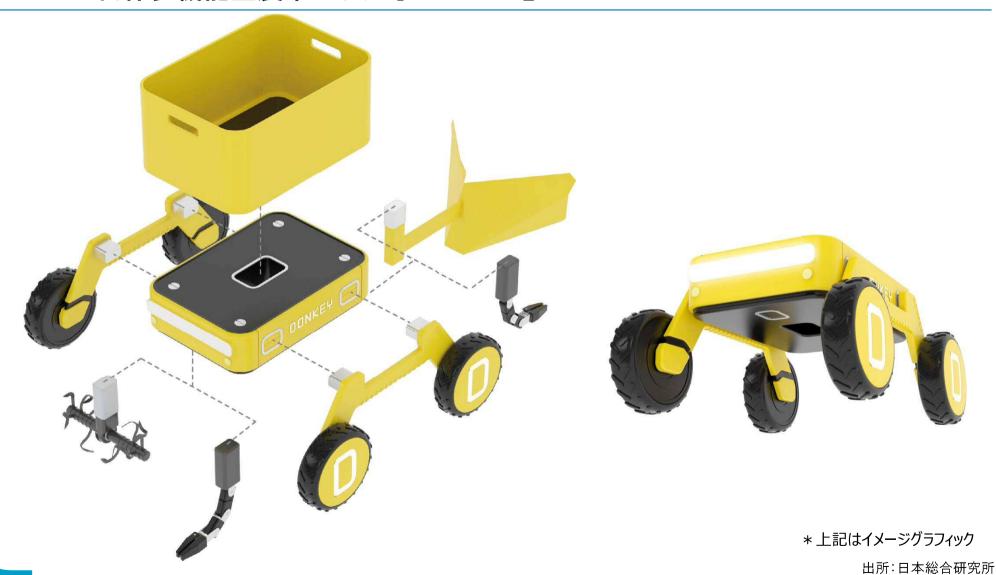
Copyright (C) 2017 The Japan Research Institute, Limited. All Rights Reserved.



# 4-1. 自律多機能型農業ロボット『DONKEY』

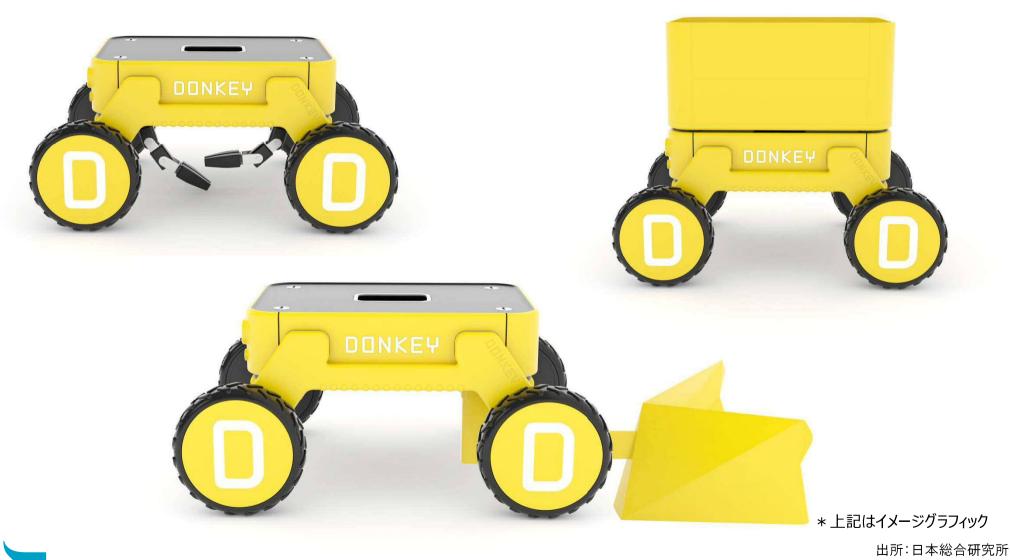
# OONKE4 agriculture 4.0





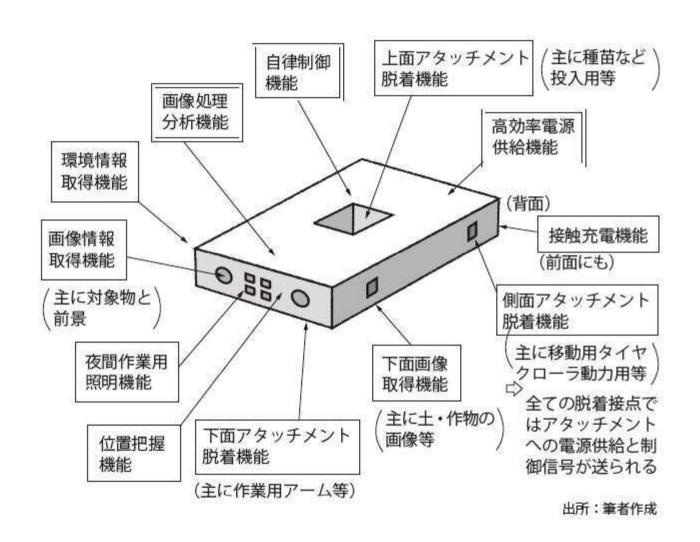

\* 上記はイメージグラフィック

出所:日本総合研究所



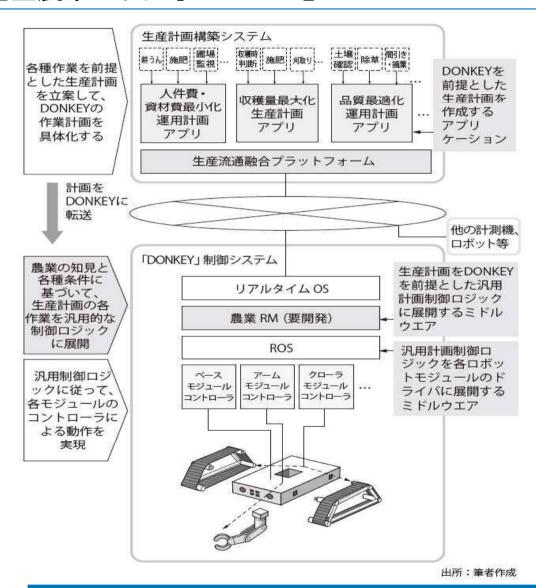

# 4-2. 自律多機能型農業ロボット『DONKEY』





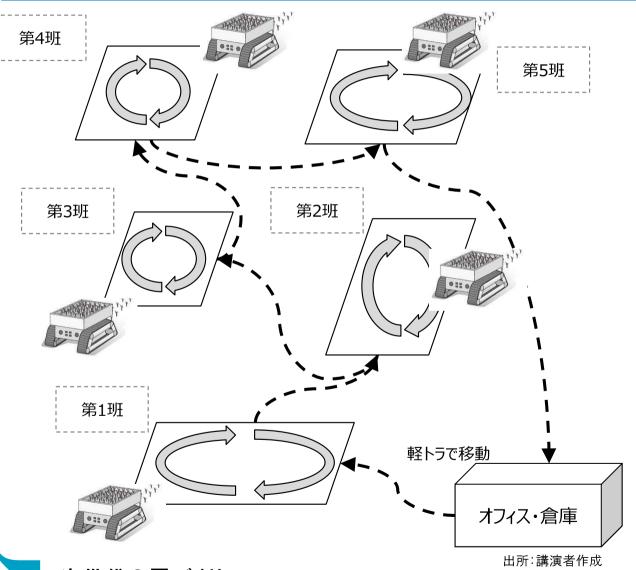

# 4-3. 自律多機能型農業ロボット『DONKEY』






# 4-4. 自律多機能型農業ロボット『DONKEY』






# 4-5. 自律多機能型農業ロボット『DONKEY』





# 4-6. 自律多機能型農業ロボット『DONKEY』



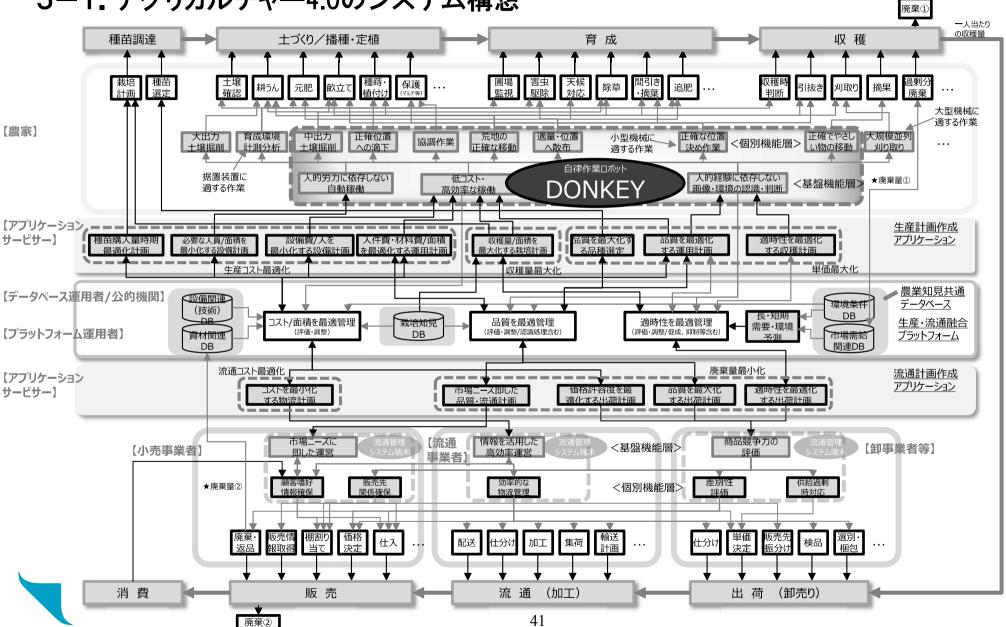
#### 【作業プロセス】

農業従事者は農業ロボットを搭載した 軽トラックを運転し、各圃場にロボットを 設置。各ロボットは自動運転で同時並 行で稼働。作業終了後に農業従事者 は軽トラでロボットを回収・交換。

(2台で1班を構成)

#### ポイント①:

1名の農業従事者の下で、複数の農業ロボットが同時に稼働。従来の農機のように圃場に常駐する必要なし。


(夜間も作業可能)

#### ポイント②:

圃場間の移動は軽トラックを利用。農機 での移動に比べて所要時間が短縮。



# 5-1. アグリカルチャ-4.0のシステム構想





#### 5-2. 提案の成果

▼ ケーススタディーとして、露地での野菜栽培において、農業ロボットの活用により、農地面積を4倍に拡大しても、現状の単収・単価が維持可能と仮定した場合の収支を試算。(農機コストや運転コスト等は各種実証事業やメーカー・農業者へのヒアリングをもとに設定)

|                 | 現料        | スマート農業の      |         |
|-----------------|-----------|--------------|---------|
|                 | 2.0∼3.0ha | 5.0ha $\sim$ | モデルケース  |
| 平均作付延べ面積(a)     | 278.9     | 1,084.7      | 1,084.7 |
| 農業所得(千円)        | 5,390     | 13,040       | 23,391  |
| 農業粗収益(千円)       | 10,639    | 35,097       | 41,377  |
| 農業経営費(千円)       | 5,249     | 22,057       | 17,986  |
| 人員数(人)          | 2.53      | 2.90         | 2.40    |
| 一人当たり農業所得(千円/人) | 2,130     | 4,497        | 9,746   |

出所:講演者試算



露地での野菜栽培で、農業IoTを駆使して現状の4倍の面積を同一人数で栽培し、かつ 単価と単収を現状維持できれば、農業従事者1名あたりの年間収入は1,000万円弱に。



# ご清聴ありがとうございました